友情鏈接

首頁 / 科學研究 / 學術交流 / 985數量經濟與金融系列講座 / 正文

985數量經濟與金融系列講座第211期🕺🏽:Sieve Inference on Semi-nonparametric Time Series Models

  發布日期:2013-03-29  瀏覽次數:

題目:Sieve Inference on Semi-nonparametric Time Series Models

主講人: Yixiao Sun, Associate professor from UCSD

Abstract

This paper provides a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi-nonparametric time series models. We show that, even when the sieve score process is not a martingale di§erence, the asymptotic variances of plug-in sieve M estimators of irregular (i.e., slower than root-T estimable) functionals are the same as those for independent data. Nevertheless, ignoring the temporal dependence in Önite samples may not lead to accurate inference. We then propose an easy-to-compute and more

accurate inference procedure based on a "pre-asymptotic" sieve variance estimator that captures temporal dependence of unknown forms. We construct a "pre-asymptotic" Wald statistic using an orthonormal series long run variance (OS-LRV) estimator. For sieve M estimators of both

regular (i.e., root-T estimable) and irregular functionals, a scaled ìpre-asymptotic" Wald statistic is asymptotically F distributed when the series number of terms in the OS-LRV estimator is helf fixed. Simulations indicate that our scaled "pre-asymptotic" Wald test with F critical values has more accurate size in Önite samples than the conventional Wald test with chi-square critical values.

返回頂部
意昂2官网专业提供:意昂2官网👧🏼、意昂2意昂2平台等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流👨🏽‍🎨,意昂2官网欢迎您。 意昂2官网官網xml地圖